EXACT SOLUTIONS OF AXISYMMETRIC FLOWS OF
AN IDEAL FLUID

(TOCHNOE RESHENIE OSESIMMETRICHNOI ZADACHI
IDEAL’ NOI ZHIDKOSTII)
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The equation for the Stokes’ stream function i/ in steady potential axi-
symmetric flows of incompressible fluids in cylindrical coordinates x, y,
6 takes the form:
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If we set Y=+ y 4%, we obtain
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We will seek solutions in the form [1 ]:
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where Q%, Qu are arbitrary harmonic functions. Equation (2) then becomes:
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On the functions fh and ¢i we impose the following conditions
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so that (4) takes the form:
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Consequently,
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The formula for fi follows easily

KIC Co_y (k- Yg) (k — 3/2)
- k lx k= 2
fe=(—1— i Cp = P ' Co==1 (8}

Let us introduce the complex potential WN(:) = ¢0(z, y) + idb (x, y).
{(z= x+ iy). Then
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Recognizing the character of hypergeometric series in the variations
of Ck and (8), we obtain
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Setting ¥(0) = 0, we arrive at the desired solution of (1):
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where W({) is an arbitrary function. The solution of the axisymmetric
problem of incompressible fluids has been related to the complex potential
solution of the two-dimensional problem. It is possible to obtain more
general solutions when we consider indefinite integrals in (7).
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